Group model-building: tackling messy problems

Jac A. M. Vennixa
Jay Wright Forrester Prize Lecture, 1999

Abstract
Group model-building here refers to a system dynamics model-building process in which a client group is deeply involved in the process of model construction. The problem that is modelled can be reasonably well defined, but it can also take the form of an ill-defined or messy problem, i.e., a situation in which opinions in a management team differ considerably. These messy managerial situations are difficult to handle, primarily because thus far little theoretical work has been conducted to shed more light on the question why these messy situations exist and why it may be difficult for a management team to reach agreement. This article fills this theoretical gap by drawing on literature from sociology, (social) psychology and small-group research. Insights from this literature are discussed and translated into guidelines for conducting Group Model-Building projects for messy problems. The article ends with the conclusion that system dynamicists should include Group Model-Building and facilitation training in their teaching programs. Copyright © 1999 John Wiley & Sons, Ltd.

The evolution of group model building
Almost since its inception, system dynamicists have involved the client (groups) in the model-building process for at least three reasons. First, to capture the required knowledge in the mental models of the client group (Forrester 1961; 1987). Second, to increase the chances of implementation of model results (cf. Roberts 1978; Weil 1980), and, finally, to enhance the client’s learning process (Greenberger et al. 1976; de Geus 1988; Lane 1989; Morecroft 1992; Morecroft and Sterman 1992). As a result, the number of projects involving the client has proliferated rapidly over the last decades (Rouwette et al. 1999).

Given this development, it is no wonder that a number of system dynamicists started to reflect more deeply on the issue of client involvement. Some concentrated on how system dynamics could be used to support strategic executive dialogue in management teams (Morecroft 1992). Others introduced “modelling as learning” as an alternative consultancy methodology for system dynamicists (Lane 1992). Still others focused on particular issues when working with groups, for example knowledge elicitation from groups, cognitive tasks and small group dynamics (Richardson et al. 1989; Vennix et al. 1992).

*J. Vennix, Department of Methodology, University of Nijmegen, PO Box 9104, 6500 HE Nijmegen, The Netherlands. Email: J.Vennix@maw.kun.nl
The literature also produced fine-grained descriptions of methods and techniques to capture the required knowledge from a group on conceptualisation (cf. Vennix et al. 1990) and in formalisation and quantification (Ford and Sterman 1998) of a system dynamics model. And, inevitably, some designed standard procedures to build system dynamics models with groups, for instance the Reference Group approach (Randers 1977; Stenberg 1980), and the Strategic Forum (Richmond 1997).

Further detailed and systematic research on quantitative modelling with groups was conducted by system dynamicists at SUNY Albany, who coined the term Group Model-Building. Their efforts led, amongst others, to a more detailed description of the different roles in working with teams (Richardson and Andersen 1995) and the notion of scripts for Group Model-Building, i.e., refined pieces of small group processes, which chained together, direct the stream of group activity in Group Model-Building sessions (Andersen and Richardson 1997; Andersen et al. 1997).

Others have employed Group Model-Building interventions to work with management teams on less tangible, ill-defined strategic issues, labelled by some scholars as messy problems (Ackoff 1974; 1979), i.e., situations in which there are large differences of opinion on the problem or even on the question of whether there is a problem. In these cases the emphasis is necessarily, but not exclusively, on problem structuring and on creating consensus and commitment with a group decision (Lane 1992; 1993; Wolstenholme 1990, 1992, 1999; Vennix 1996; Majone 1984; Zakay 1984), in order for concerted action to result (Drucker 1988). This paper continues this latter line of research by exploring a couple of theoretical questions concerning the origins of messy managerial situations and their implications for system dynamics modelling with groups.

Questions addressed in this paper

Although some have tried to bridge the gap between soft OR and system dynamics (Lane 1994; Lane and Oliva 1998), and attempts have been made to find a social theoretic home for system dynamics (Lane 1998; 1999), there remain large theoretical gaps, particularly when it comes to the application of system dynamics and Group Model-Building to messy managerial situations. Exploring these complex intervention situations may significantly improve our understanding and effectiveness of Group Model-Building (or systems thinking interventions for that matter) in both semi-structured and ill-structured decision situations.
The first step towards more understanding is to ask why these messy managerial situations exist (i.e., why opinions differ so widely) and to identify the most important deficiencies that occur in teams dealing with these type of problems when trying to reach agreement. More specifically, we have to provide answers to two sets of questions. The first set of questions is:

- How do humans process information and construct models of reality?
- What potential deficiencies can be observed in this process of mental model construction?
- How can Group Model-Building be helpful to overcome these deficiencies?

The second set of questions is:

- How do members of management teams interact and communicate their mental models?
- What deficiencies occur in group interaction processes?
- How can Group Model-Building be helpful in this respect?

With regard to the first set of questions, we will make a distinction between the information processing capacity of the human mind, on the one hand, and the way humans interpret and perceive situations, on the other.

Individual sources of messy problems: limited information processing capacity

Research over the last four decades has convincingly demonstrated that our information processing capacity is limited (e.g., Simon 1946; 1955; Miller 1956) and that humans employ biases and heuristics (e.g., anchoring and adjustment, the representativeness heuristic, and the availability heuristic) in order to reduce mental effort (Hogarth 1987; Kahneman et al. 1982). Application of biases and heuristics is not limited to individuals. Groups display the same biases and will thus not make better decisions than individuals (Stasson et al. 1988).

Research into the area of cognitive maps has also illustrated the restricted character of human information processing. Humans seem to experience difficulty thinking in terms of causal nets (Dörner 1980), and are incapable of entertaining imbalanced paths and feedback loops in their cognitive maps (Axelrod 1976; Sevon 1984). Even extensive training cannot alter this (cf. Vennix 1990; Verburgh 1994; Kenis 1995).

In addition, experiments in dynamic decision making have revealed that people tend to ignore feedback processes, which produces detrimental results
(Sterman 1989a; 1989b; 1994; Brehmer 1989; Kleinmuntz 1993), a result that is confirmed by field research (Hall 1984). And again explicit training in understanding the feedback structure of the system has virtually no impact on people’s ability to manage such a system effectively (Maxwell et al. 1994; Richardson et al. 1994).

Implications for Group Model-Building

Conclusions from research in human information processing with regard to system dynamics and Group Model-Building seem straightforward. Forrester has repeatedly pointed out that the human mind is not well equipped to trace the dynamics of complex feedback structures. Hence, the need for system dynamics simulation. In fact, as Sterman (1994) argues, simulation may be the only effective way to learn in and about complex systems. Many Group Model-Building and systems thinking interventions work on this assumption and consider simulation to be the primary contribution to the improvement of a group’s information processing capacity.

However, there is another, sometimes underestimated, aspect in which system dynamics can increase a group’s information processing capacity. That is through mapping or qualitative modelling. Qualitative modelling has been widely discussed in the system dynamics literature and is a continuing source of controversy. Proponents of quantitative modelling point out that it is dangerous to draw conclusions on the dynamics of a system that are solely based on diagrams, a position which can hardly be refuted, given the wide range of evidence (for an overview, see Sterman 1994). Advocates of the use of qualitative modelling have argued that in a number of cases quantification may either decrease the model’s relevance for an audience or can even be dangerously misleading (cf. Coyle 1996; 1999; Wolstenholme 1992; 1999). This argument becomes critical when confronted with messy problems. The choice for the interventionist is then to either simply walk away from the management problem or to use the rigour of diagramming to aid the debate and increase the group’s information processing capacity. After all, diagrams help to keep track of complex structures (Anderson 1980; Larkin and Simon 1987; Lippitt 1983). More specifically, they (a) add rigor to the analysis and group discussion (Wolstenholme 1982; 1990; 1999; Vennix et al. 1993; Lane 1993), (b) help to identify feedback loops and potentially understand behaviour (Coyle 1999), (c) put the problem on one sheet of paper (Coyle 1999), and (d) serve as a so-called group memory in Group Model-Building sessions (Vennix 1996). In short, when one is working with groups on messy problems, increasing the
information processing capacity does not only concern the dynamics of a system, but also its causal feedback structure.

However, the limits on people’s cognitive abilities are just one of the problems encountered. Humans do not “simply” process information as if they were computers, they continuously make selections, interpret information and perceive situations in different ways.

Individual sources of messy problems: perceptions and reality construction

Psychologists have, for example, found that differential previous information may lead to quite different interpretations of similar situations. For instance, if two groups of people have to judge the suitability of an applicant for a job on the basis of such information as a resumé, a letter of application and the like, they interpret this written information quite differently if they have previously been provided with an unfavourable (as opposed to a favourable) letter of reference about the application (Tucker and Rowe 1979). In short, people can easily be led to believe things and, even when told in retrospect that they participated in an experiment, this may have no marked influence on these beliefs (cf. Naftulin et al. 1973).

As well as the effect of previous information, selection and interpretation are heavily affected by one’s professional background or position in an organisation. Different people in an organisation have different interests. It is frequently believed that these differences of interest are the sole cause of differences of interpretation. However, Dearborn and Simon (1958) convincingly demonstrated that these differences of interpretation remain even when there are no real interests at stake. Obviously professional criteria for selecting information are deeply internalised and automatically guide our perceptions and interpretations.

To complicate the matter further, humans are social beings and their interpretations are thus influenced by what others think (see, for example, Asch 1963; Berkowitz 1959). Everyday reality presents itself as an intersubjective world which is shared with others (Berger and Luckmann 1966). And, as phenomenologists have argued, everyday reality is generally taken for granted (Schutz 1962) and serves as a context that guides our interpretations. Similar information will be interpreted differently depending on the context in which we find ourselves. This has, for instance, been convincingly demonstrated in a famous and illustrative experiment conducted by Rosenhan (1984). In this experiment, a number of volunteers were instructed to go to psychiatric
hospitals telling doctors that they heard voices, which in fact was not the case. One goal of the experiment was to find out how soon a person would be released if this person behaved normally after being admitted. This proved not to be too easy. After all, once someone is hospitalised, any kind of behaviour is interpreted in the context of the psychiatric institution and is almost suspect by definition, much to the detriment of the “healthy” persons who took part in this experiment.

Finally, to complete the picture, human memory is also often distorted, a phenomenon known as hindsight bias (Fischhoff 1975; Fischhoff and Beyth 1975). Memory is not a device that stores and retrieves information; rather it continuously reconstructs the past in order to fit it in with current beliefs and opinions. Worse still, it has been demonstrated that memories can be deliberately created of events that actually never occurred (see, for instance, Loftus and Ketcham 1994).

Implications for Group Model-Building

Summarising, we may conclude that the way humans perceive situations and construct their models of reality is a complex phenomenon. We observe that interpretations, perceptions and memory may be distorted as a result of a number of factors.

With respect to Group Model-Building, this implies that we have to be careful when talking about eliciting knowledge from group members. First, we ought to be aware that people can easily be led to believe things and that the opinions they hold may be strongly affected by what others think and the context in which they find themselves. In other words the definition of a problem may be a socially constructed phenomenon that has not been put to the test. As Hogarth points out:

It has been suggested, for instance, that illusory correlation persists in situations where people do not receive good feedback concerning their judgements and where others share the same illusions. Thus instead of feedback concerning actual outcomes, each person both reinforces and is reinforced by the illusions of the others. In many organisations, common beliefs are precisely of this nature. (Hogarth 1987, 114).

Group model building and system dynamics help to uncover these illusions, because the rigour of mapping and modelling forces participants to carefully and consistently make their mental models explicit and put their problem definitions to the test, by surfacing implicit (causal) assumptions.
Second, people's mental models are frequently only partial representations of a complex situation. Managers tend to see parts rather than wholes, particularly when they are not trained in systems thinking (cf. Dearborn and Simon 1957; Hall 1984). The result is departmental bias and potential deadlock situations, which may jeopardise organised action and may even lead to the demise of the organisation (Hall, 1984). Group Model-Building not only offers an opportunity to share and align piecemeal mental models (Hux et al. 1997), but also creates the possibility of assimilating and integrating partial mental models into a holistic system description, making participants overcome their local, departmental views (Vennix 1995; 1996).

However, in order to accomplish the latter, more is needed than mapping or modelling. Let us therefore turn to the second set of questions: the way group members interact, create their social reality and frequently get locked into undesirable situations.

Group sources of messy problems

Group sources of messy problems relate to deficiencies in group interaction and to the self-fulfilling nature of reality construction in groups. Each of these will be discussed below.

Deficiencies in group interaction

Groups can show a variety of deficiencies. Frequently encountered is the mixing up of cognitive tasks, in particular the production and evaluation of information. This is partly caused by our strong tendency to evaluate what is said, which inhibits our potential to listen carefully (Rogers and Roethlisberger 1988). Special group process techniques like brainstorming, Delphi and the Nominal Group Technique can help to bring more structure into the discussion, which will in turn increase the group’s performance as well as the commitment to a decision (White et al. 1980). In that respect, the type of structure (or decision-making sequence) is of limited importance (Brilhart and Jochem 1964; Hirokawa 1985); just unthinkingly following a sequence of steps does not automatically result in a good decision (Gouran 1982; Hirokawa 1985).

Another problem in groups is the lack of critical investigation, or, in extreme cases, the deliberate suppression of it, leading to groupthink situations (Janis 1972; Janis and Mann 1977). Suppressing critique and avoiding differences of opinion has a negative impact on decision quality (Cosier and Rose 1977; Hall and Watson 1971; Nemiroff and King 1975; Harper and Askling 1980;
Special conflict-promoting group process techniques like Devil's Advocate and Dialectical Inquiry can be helpful in this regard (for a concise description of both procedures, see Vennix 1996, Appendix 3).

However, in messy managerial situations the biggest problem is the way team members communicate. Apart from our inclination to evaluate and our inability to listen, a third inhibiting factor to effective communication is defensiveness, leading to low-quality communication, which in turn (a) increases decision time (Fouriezos et al. 1950), (b) has a negative impact on decision quality (Leathers 1972), and (c) inhibits creativity in groups (Klimoski and Karol 1976). In spite of these disadvantages, defensiveness is ubiquitous. Humans employ defensive routines as a way to protect themselves from losing face when exposing their ideas to others (Schein 1987; Argyris 1990; 1994). And losing face in a group is strongly feared by most people. As a result, defensive routines are difficult to discuss openly. ‘Accusing’ someone of being defensive will automatically backfire (“Me? I am not being defensive!”). The question might be raised how these ineffective communication patterns should be altered. To answer this question, let us return to the construction of reality in people’s mind and take the argument one step further by looking at how people create their social reality in groups.

Reality construction in groups: the reality of multiple realities

We have observed that there are several reasons why people interpret situations differently. As early as the 1920s, Thomas directed our attention to the fact that it is not so much a question whether these individual realities are valid; rather, the interesting question is what this implies. The answer to this question led him to the formulation of what later became known as the famous Thomas theorem: “If men define situations as real, they are real in their consequences” (Thomas and Thomas 1928, p. 572). In other words, if people define situations as real they will behave accordingly. And this behaviour in turn creates a reality that is perceived by others and affects their thinking and behaviour, as can be seen in Figure 1.

A person A acquires information from the environment, subject to a number of mechanisms that have been described previously. Based on his own reality description and this information, this person constructs a “model of reality”, which not only affects subsequent perceptions, but also forms the basis for his behaviour. In a dyadic relationship A’s behaviour forms part of B’s environment, and for B, mutatis mutandis, the same holds. B selects and interprets data in the environment, constructs his model and behaves accordingly.5
A person’s behaviour is to a large degree affected by expectations, which are in turn based on a person’s model of reality. Research in the realm of expectations has show the existence of self-fulfilling prophecies: we anticipate certain expectations and then direct our behaviour in such a way that these expectations actually become reality. Humans not only construct reality in their minds; their behaviour also causes this reality in their minds to become reality in their environment.6

Self-fulfilling prophecies are ubiquitous (Merton 1957; Johnson Abercrombie 1960; Jones 1977; Watzlawick 1984) and are extremely difficult to uncover (see, for instance, Farina et al. 1968). They occur, for example, in education and teaching (cf. Baker and Crist 1971; Jussim 1986) and in selection recruitment interviews (Dipboye 1982), and, surprisingly, they have also been demonstrated in the training of rats (Rosenthal 1966) and even earthworms (Cordaro and Ison 1963). They also occur in (small group) interaction. Argyris (1990) presents fine examples of people communicating with each other about an organisational problem where each person blames the other for the difficulties. One of the things that both sides often think (but not really say in public) about the other side is: “you do not really understand the issues”. The result is that, based on this assumption, combined with the expectation that the other will not listen and will not easily be convinced, each will do the utmost to convince the other by talking as much as possible and limiting their listening. Typically, this kind of behaviour may put the other person “one down” or even irritate, which in turn will make the other person act in the same manner (getting both potentially locked into an escalation archetype). And gradually we become convinced that there is an inevitable social reality, which dictates that people in meetings do not listen to each other, never let each other finish talking, and only try to convince one another. This inevitability (and the taken-for-grantedness of social reality for that matter) is indicated by such statements as: “well, that’s the way it works
in organisations”. But, basically, it is the reality that we, willingly or unwillingly, create through our own actions. My expectation that the other will not listen leads me to behave in a particular way (trying to convince by talking a lot), which in turn makes the other behave the way I expected in the first place.

As the example shows, there may be an undesirable situation and, although we may be aware of its undesirability, it is a different matter to change it. There are at least three requirements to alter situations that are problematic to most people. The first is that we are slow learners. In many situations we are simply not aware of how and why we interpret situations in a particular way. Moreover, humans are inclined to ignore information that is not in accordance with their beliefs and to look for information that is in agreement with their mental models (Einhorn and Hogarth 1978). Rather than learning from outcome feedback, humans are inclined to explain away mistakes and failures (Brehmer 1980, pp.228–229; Sterman 1994), and to manipulate meanings in order to maintain their “definition of the situation” (McHugh, 1968). Finally, being able to learn also presupposes that our memory works well. As we have seen, this is questionable, to say the least.

The second problem with breaking self-fulfilling prophecies is that one has to be well aware of one’s own behaviour. However, as several scholars have shown, what people say they do may differ substantially from what they actually do (Argyris and Schöen 1978, Deutscher 1973). Research conducted by Argyris (1992) demonstrates that we are very capable of seeing a discrepancy between another person’s verbal and non-verbal behaviour, but we are bad at seeing such a discrepancy in ourselves. For instance, when people have to judge their own behaviour after having been involved in a conflict, they are inclined to see themselves as cooperative while the other party is generally seen as competitive (Jones 1977, p.122; Kelly and Stahelski 1970).

Finally, if both previous requirements are met, one should also be able to change one’s own behaviour significantly in order to break through a self-fulfilling prophecy and change the “inevitable” social reality. This can be particularly difficult. In the example where two people continuously try to convince each other, the simple rule to break the vicious cycle (and to see that social reality is actually constructed by our own behaviour) is to act in the opposite manner: start listening and think along with the other person. The rule is deceptively simple, but it can prove extremely difficult to apply consistently.

Implications for Group Model-Building: the role of facilitation
Interaction patterns in groups can be particularly poor. It will be clear that the construction of a map or model of a problem is not very helpful in this case.
Here another important ingredient of Group Model-Building comes to the fore: the group facilitator, a role that is of paramount importance in turning Group Model-Building interventions into a success (cf. Phillips and Phillips 1993; Vennix et al. 1993).

Frequently, it is tacitly assumed that good model-builders will also be effective group facilitators. However, characteristics that are essential for model-building are often orthogonal to those necessary for effective group facilitation. Given the way we described reality construction in groups, it is obvious that the facilitator's non-verbal behaviour is significant: not what a facilitator says, but rather what this person otherwise does is critical (see also Hackman 1990, xvii). A facilitator is primarily a person who acts as a role model for the group, a person who avoids the common deficiencies in group interaction, which negatively affect the quality of the decision.

Critical characteristics of an effective facilitator

Group facilitation is primarily concerned with procedure (i.e., the way a problem is tackled) and process (i.e., the way group members interact with each other) and only indirectly with content (the subject matter under discussion). In other words, a group facilitator is concerned with how things are done in a meeting. When it comes to the characteristics of an effective facilitator, we have to make a distinction between attitudes and skills.

Facilitation attitudes

The right attitudes are critical, more critical than the required skills. It is sometimes overlooked that the most important characteristic for a facilitator is a helping attitude. In addition, an effective facilitator is neutral with regard to the content of the discussion. As we have seen, the facilitator is primarily responsible for procedure and process. Getting involved in the content of the discussion will cause the facilitator to lose his special role and effectiveness. What a facilitator does need is an enquiring attitude. This means being curious about how people perceive and interpret situations and how and why they define situations as problematic. This implies that the facilitator asks questions rather than providing answers. He or she is not supposed to teach, but to foster reflection and learning in a team by discouraging defensive communication. Another attitude that is required is integrity. As a facilitator, it is not wise to rely on tricks, since people will see through them, maybe not the first time, but certainly after several times. Tricks will be counterproductive since people will
either anticipate them or be irritated by them (Gibb 1960, 145–146). Showing integrity and being authentic will prove to be more effective in the long run.

Facilitation skills

Although the right attitudes are critical, skills are of course indispensable. One prerequisite in the context of Group Model-Building is a thorough knowledge of system dynamics and model-building skills in order to be able to ask the right questions during meetings and to be able to translate what participants say into system dynamics terms. Thorough knowledge of system dynamics is also required in order to be in a position to judge whether system dynamics is suitable for a particular problem.

Furthermore, process structuring skills are required. The construction of a system dynamics model involves a wide variety of activities and cognitive tasks. These range from generating variables to be included in the model, to identifying feedback structure, to establishing system boundaries, to evaluating model output, to name only a few. Process structuring skills presuppose an awareness of the existence of various cognitive tasks that a group can face, as well as knowledge of group process techniques that support particular types of cognitive tasks (e.g., brainstorming, Nominal Group Technique, Delphi, Devil’s Advocate and Dialectical Inquiry).

Closely related to process structuring are conflict handling skills. Central to messy problems are cognitive conflicts, i.e., differences of viewpoint. As described previously, avoiding conflict and seeking premature consensus negatively affects the quality of the decision. As might be expected, the relationship between the number of conflicts and quality of decision is curvilinear in shape. More conflict induces higher-quality decisions. Beyond a certain point, however, decision quality will deteriorate with a further increase in the number of conflicts (Wall et al. 1987). The lesson for the facilitator is that, in situations of low cognitive conflict, he or she should induce conflict (for instance, by employing conflict promoting techniques), while in groups where cognitive conflict abounds he or she should foster consensus.

Finally, communication skills are important. As we have seen, a facilitator’s attitude of open communication will help prevent defensive routines. When it comes to skills, an important required skill for a facilitator is active (or reflective) listening to prevent miscommunication: listening and trying to understand what someone means by what he or she says. Again, by modelling in his or her own behaviour what good communication means, the facilitator may expect that others in the group will also start communicating more effectively.
Conclusions and discussion

System dynamicists have repeatedly pointed out the flaws in human mental models and blame many of the problems in policy making to these deficiencies. Much of the literature in system dynamics (tacitly) assumes that better understanding of the structure and behaviour of complex systems by employing system dynamics simulation will solve most of these problems. The latest trend in this respect is the use of management flight simulators to train people to become better "dynamic decision makers". However useful these simulators may be (and it is the author’s opinion that they are), it is simplistic to suggest that, if we just put our students and policy makers through these simulators, this will significantly improve performance of organisations, much analogous to flight simulators in aviation. One reason is the existence of persistent barriers to learning, not only cognitive but also social, primarily those related to defensive routines and face saving (Schein 1987; Argyris 1990; 1994; Senge 1990). In fact, Sterman (1994) argues that, only if we deal with these barriers competently, will real learning take place and he continues by pointing out that learning will be effective if participants do not just play a game, but actively participate in the construction of the model. Group Model-Building is a way to accomplish that. But when conducting systemic interventions through Group Model-Building, we have to be well aware that cognitive limitations are only one of the problems to be encountered. Two important additional issues are: differences in perceptions, leading to multiple realities, and ineffective communication patterns, which block productive discussion of these multiple realities.

If one really wants to have an impact on these situations and if one is serious about supporting the resolution of messy problems, two issues become crucial and need to be addressed. First, and maybe most difficult of all, one will have to accept that in a number of cases it is not very useful or even impossible to go through the whole model-building cycle. In some cases quantification will either not add to understanding an issue, or will in fact be dangerously misleading, as Coyle (1999) convincingly demonstrates. In fact, as Richardson (1999) points out, the growing trend in qualitative mapping is 'here to stay'. Rather than getting locked into a trench warfare, it may be more productive to reflect on the wise uses of both qualitative and quantitative modelling and to develop rigorous guidelines for mapping as well as criteria to evaluate the quality of diagrams (see, for instance, Coyle 1996, p. 46). Simply walking away from situations that defy quantification will make management teams run the risk of ignoring feedback in their problem with the detrimental consequences that we have seen. And, although awareness of feedback processes (which might come through qualitative modelling) does not imply that one understands its dynamic
consequences, it is probably still better to be aware of them than to ignore them entirely.

Second, we will have to adapt our teaching programs. Apart from teaching our students “classical system dynamics”, we will also have to make them familiar with processes in groups and instruct them how to become effective facilitators (see, for instance, Haslett et al. 1999), not only by teaching facilitation skills, but primarily by creating favourable attitudes. A good starting point may be to show them that scientists are frequently as prone to judgmental errors as laymen (Sterman 1994), an observation which probably also holds for biases in perception and ineffective communication patterns in groups. We should avoid developing teacher characteristics in our students, but instead try to foster an open mind and a reflective attitude. In short, we should help students to become persons who encourage team learning by supportive communication. This is not to say that analytical and system dynamics model-building skills are insignificant; they are very important indeed. The message is that systems thinking interventions will be made much more effective, if system dynamics model building abilities are skilfully combined with adequate facilitation.

Notes

1. In this paper I will use Group Model-Building as a generic label for all approaches that involve the client in the system dynamics model building process, be it in the conceptualisation and/or formalisation and simulation of the model.

2. This type of studies is related to research conducted in problem structuring and soft Operations Research (Rosenhead 1989; Eden and Simpson 1989; Eden and Radford 1990; Checkland 1981; Checkland and Scholes 1990).

3. Qualitative system dynamics was first made an issue in system dynamics by Wolstenholme (1982) and Wolstenholme and Coyle (1983) and has since been the subject of controversy within the system dynamics community. We will return to this issue in a later section. Although related, the issue of qualitative versus quantitative modelling should be distinguished from the inherent problems in the use of causal loop diagrams as described by Richardson (1985; 1997).

4. A number of well-known handbooks on small group research, discussing these deficiencies (and their potential resolution) are: Hare (1962); Collins and Guetzkow (1964); Hare et al. (1965); Steiner (1972); Fisher (1974); McGrath (1984); Hirokawa and Poole (1986); Hackman (1990); Jensen and Chilberg (1991); and Worochel et al. (1992).
5. For reasons of simplicity, the figure has been restricted to a dyadic relationship, but it could easily be adapted to a group situation and the arrow indicating the effect of person A’s opinions on those of B and vice versa, i.e., the social nature of reality construction as discussed above, has been omitted. In addition, we have to point out that when talking about a person’s model of reality, we in fact refer to the so-called theory in use rather than the espoused theory (Argyris and Schön 1978).

6. For an alternative view on the construction of social reality, in relation to the use of system dynamics and modelling with groups, see Lane (1998).

Acknowledgement

The author gratefully acknowledges the useful comments of David Lane.

References

